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Weibull analysis for the interpretation of strengths of brittle materials was previously 
justified for a particular flaw size distribution. The present results show that the Weibull 
distribution provides a close approximation to the distribution of failure stress for all the 
flaw size distributions considered. However certain reservations are noted in the interpret- 
ation of the Weibull modulus. 

1, Introduction 
The Weibull distribution is commonly used in the 
analysis of  strengths of  brittle materials. It has pro- 
vided a means of  comparing the strengths of  differ- 
ent brittle materials and is important in the 
interpretation of  the strength of  a material and in 
the design of  components for engineering appli- 
cations. 

Jayatilaka and Trustrum [1 ] showed that for a 
particular flaw size distribution, the distribution of  
failure stress under uniaxial tensile loading is 
closely approximated by the Weibull distribution, 
provided that the number of  flaws or cracks in the 
material is sufficiently large. It is possible that the 
flaw size distribution of  a material may have a 
shape other than previously described [1]. For 
example the distribution could take a normal or 
exponential shape. It is well known that the same 
material, prepared under different conditions, has 
different values of  the Weibull modulus, m. In this 
paper other possible flaw size distributions are 
considered and the corresponding distributions of  
failure stress are derived. Thereby it is possible to 
comment  on the applicability of  Weibull analysis 
for the strength of  brittle materials. 

2. Theory 
The strength, or, of  a crack of size c inclined at an 
angle/3 to a uniform tensile stress may be approxi- 

mately expressed for a material with Poisson's 
ratio 0.25 [1] as 

(:r2C = K2/3 -1 (1) 

where K is the critical stress intensity factor of  the 
material (which is the same as K ic  ). Let H ( c ) b e  
the cumulative distribution function of  the crack 
size then, assuming all crack angles are equally 
likely, the probability of  failure for one crack at 
stress o, F(o), is given by 

F(o) = f~r/2[ "~ 2H'(c)dcd/3 
. 0  J x  "IT 

fo/a 2 [] - -H(x) ]  d/3 
/g 

(2) 

where x = K=/[30= and H'(c) is the probability den- 
sity function. Making the further assumption that 
fracture at the flaw with minimum strength leads 
to total failure, it follows that the distribution 
function of the failure stress for N cracks, G(o), 
satisfies 

G(o) = t -- probability aI1N cracks survive at 
stress o 

= 1 -- [1 - -F(o) ]  N. (3) 

De Haan [2] derives the limit distributions for 
the maxima of identically, independently distri- 
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buted random variables and gives sufficient con- 
ditions for the convergence of  the maximum to a 
specified limit distribution. His work is based on 
earlier work by Gnedenko and Von Mises. Since 
the minimum flaw strength is required a slight 
adaptation of  the results in De Haan's paper is 
necessary. This leads to sufficient conditions for 
the convergence of  the minimum of a set of  identi- 
cally, independently distributed random variables, 
namely the flaw strengths, to a given limit distri- 
bution and the following theorem contains the 
required results. 

2.1. Theorem 
(i) Suppose F'(a) > 0 in (%, Ov), F'(o) = 0 for 

a < Ou and for some cr > 0 

Jim (o F'(a) 
~*~. - o . )  F(o)  = ~ 

then for large N 

\ aN / J  

where F(% + aN) = N -1. 

(ii) Suppose F"(o) > 0 in (Ou, av), F'(o) = 0 for 
0 ~< % and 

lim q~"(a) - O, where ~(0) = l n F ( o ) ,  
~,,,~ [((o)1 = 

then for large N 

G(o) ~ 1 -- exp [--exp < o <  oo), 

where ~b(bN) = -- In N and aN = 1/{bt(bN). 

The limit distribution in part (i) of  the theorem 
is the Weibull distribution, where a is the Weibull 
modulus, ou is the stress below which there is a 
zero probability of  failure, N is the number of  
cracks and the probability of  failure of  one crack 
at stress ou + a N  is 1IN. In part (ii) the limit 
distribution is known as the Gumbel distribution 
which has mean b N - - a N "  / and variance n2a~/6, 
where 3' = 0.5772 is Euler's constant, so a N is a 
scale parameter and the probability of  failure of  
one crack at stress b N is 1IN. 

3. Application 
Four different types of  flaw size distribution are 
now considered and the corresponding limit distri- 
butions for the failure stress are derived. Fig. 1 
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shows examples of  the four distribution types, 
which all have the same mean and variance for ease 
of  comparison. 

3.1. Case a 1 -- H(c)  ~ k c - "  (n > O) 
for large c 

This case includes the Pareto, Cauchy, t and F 
distributions and also the distribution used by 
Jayatilaka and Trustrum [1]. Substituting H(c) 
into Equation 2 gives 

k[K21-ndfl = k'a TM as o4,0 (4) F(a)-J~ ~fia2J 

where k ' =  [k/(n + 1)](rr/2K2) ". On applying 
theorem (i) with Ou = 0 gives 

lim oF'(a) _ 2n > 0  and k'a~ n ~ N  -1 
~,0 F(o) 

hence 

G(o) ~ 1 -- exp (-- k'No TM) for large N. 

(5) 

So for flaw size distributions which decay like an 
inverse power law, the resulting limit distribution 
for the failure stress is the Weibull distribution 
with Weibull modulus m = 2n. The mean failure 
stress 6 is given by 

where P is the gamma function. So for two speci- 
mens of  the same material with N1 and N2 flaws, 
respectively, 

= -  -{N2t 1/m. (7) 6_!1 

62 ~NI]  

3.2. Case b 

1 - -  H(c )  ~ k(In c)re -x(Inc)2 

(X > 0) for large c 
This case covers the Lognormal distribution, which 
is often used for data with a skew distribution, and 
it can be shown that 

as a,~0. (8) 

An application of  part (ii) of  the theorem with 
q~(o) ~ -- 4X(ln a) 2 as a $ 0 gives 
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Figure 1 Graphs of Power Law, Lognormal, Gamma and Normal probability densities with equal means and equal vari- 
ances, 

lim 0"(o) lim 1 [ l n o - - 1 ]  
~,o [ r  - ~,o 8-~ / (G-77o): J = o 

S O  

G ( o ) ~ l - - e x p  - - e x p \  aN /]  

(9) 

where 4X(ln bN) 2 ~ In N and a N ~ --  bN/8X in b N. 
The mean failure stress 

0 ~ exp [-- (in N/4X) a/2 ] for large N ( 1 0 )  

and the ratio of mean failure stresses 

01 exp [{lnN2]l/2--(lnN']l/2l 
tCK-} j. Ol) 

3.3. Case c 1 -- H(c) ~ kcre -xc 
(X > O) for large c 

The Exponential ,  Gamma and X 2 distributions are 
examples of  this case for which 

f (o)  ~ k {2K2] r-I (__ 2)tK 2 ] 
\rro2] exp rroz ] as o $ 0. 

(12) 

Thus (b(cr) ~ --  2XK2/rro 2 and applying theorem 

(ii) gives 

lira ~"(o) - lim 3~r~ 
a*o [~'(o)] 2 c~o 4XK2 - 0. 

Hence 

G ( ~ r ) ~ l - - e x p  - - e x p \  aN ]J 

(13) 

where 2XK 2/rrb~ ~ ln N and a N ~ rrb~r/4XK 2, so 

6 ~ (2XKa/rr l n N )  t/2 for l a rgeN (14) 

and 
~, (INN211/2 

3.4. Case d 1 -- H(c) ~ kcre -xc=-oc 
(X > O) for large c 

The normal distribution is included in this case for 
which 

F ( o ) - ~ - X [ - s  exp [ -  ~7~-o2/ -p~-o2  j 

as o $ 0. (16) 
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This gives ~ o )  ~ -- k(2K2/rw=) 2 as 0- 4, 0 and 

lim qf'(0-) 
o,o [r 

Hence 
r 

G(0-) ~ 1 -- exp ]--  exp 
[ 

57-/.20 -4 
- - -  lim - 0 .  

a~,o 16XK 4 

0- - -  b~N]l for large N 

aN ] J  (17) 

where X(2 KZ/lrb~) = ~ In N and a N ~ nZb~/16X K 4, 
SO 

{4XK4tl/4 
6 ~  ~r21n N ]  for large N (18) 

and 
81 (ln N2] 1/4 
6~ ~ ~iTNf]  " (19) 

The above cases suggest that the Weibull distri- 
bution is the limit distribution only for flaw size 
distributions which decay like an inverse power 
law for large flaws, and that faster rates of  decay 
lead to the Gumbel distribution. One disadvantage 
of  the Gumbel distribution as a model for the dis- 
tribution of  failure stress is that, for sufficiently 
low values of  the probability of  failure Pf, it pre- 
dicts negative values for the failure stress. However 
in Section 4, it is shown that a family of  Weibull 
distributions can be found which closely approxi- 
mate a given Gumbel distribution except for small 
values of  Pf and l - - P , .  This property was noted 
by Peto and Lee [3] and justifies the use of  the 
Weibull distribution as a model for P,.  

An interesting special case occurs when the 
cracks are of  constant size and randomly oriented. 
This applies to specimens that are subjected to 
flexural loading and whose surfaces have been pol- 
ished in a controlled manner to produce constant 
size scratches on the surfaces. In this case H(c) = 1 
for c > Cu and zero otherwise, which on substitut- 
ing into Equation 2 gives F(0-)= 1 -  0-2u/0-2 for 
0 > %  =(2K2/Trcu) u2 and zero otherwise. The 
limiting distribution is the Exponential distri- 
bution given by 

G(0-) = 1--  ~ l - - e x p  - -2N(0-  
\ 0-u ]J 

(0-> 0-u > 0 )  

which is a special case of  the Weibull distribution 
with m = 1. In general, Weibull distributions with 
0-u > 0 derive from crack size distributions with an 
upper bound on the crack size. 

2 7 6 8  

4. Relationship between Weibull and 
Gumbel distributions 

Consider the usual form of the Weibull distri- 
butions used for determining the strength 0- of  a 
brittle material of  volume V, 

P~ = 1 - - e x p  - - V  ( 0 - > % )  

(20) 

which has mean 

= % + 0-oV-Ump(1 + l /m)  (21) 

and variance 

Var(0-) = 0-o2V-2/m[p(1 + 2 / m ) -  P2(1 + l /m)].  

(22) 

Using the approximation exp (x) ~ 1 + x for 
I x l ~ l ,  

V1/ 'n( ~ 1 7 6  = l + a - - O u - - ~  -lIra 

\ Oo I ooV -1/m 

exp V-l,m - s - i ' m ]  

for Ou r o ' ~  0-u + 2Oo V-l/m, and substituting in 
Equation 20 gives 

P f - ~ l - e x p  - e x p m  / I  " 

(23) 

The right hand side of  Equation 23 is the Gumbel 
distribution, which has mean 

6 = Ou + ooV-1/m(1 -3 ` /m)  (3` = 0.5772) 

(24) 
and variance 

Var(o) = ~r2o2oV-2/m/6rn 2. (25) 

Using the results P'(1) = -- T and P"(1) = 7r2/6 + 3 ,2, 
one can show that Equation 24 is the first two 
terms of the Taylor series in rn -1 of  Equation 21 
and Equation 25 is the first non-vanishing term 
of the Taylor series of  Equation 22. This means 
that the approximation is better for larger values 
of  m. Also eliminating V between Equations 24 
and 25 gives 

[6 Var(o)] u2 
6 = Ou + (m --3`) (26) 

7r 

which shows that a family of  Weibull distributions, 
with 0-u and m linearly related, approximate the 
Gumbel distribution determined by the values of 6 
and Var(o). This explains a result found by 
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Figure 2 Graphs of the Gumbel and three Weibull distributions with parameters satisfying Equations 24 and 25 with 
6 = 167.0 and Vat(o) = 198.2. 

Trustrum and Jayati laka [4]. It also gives further 
support for the recommendat ion in the same paper 
for using Equation 20 with ou = 0 for the prob- 
abili ty of  failure at stress o, since the best approxi- 
mation to the Gumbel distribution is obtained 
when m is largest, which occurs at ou = 0. In 
Fig. 2 three Weibull and one Gumbel distributions 
are drawn with parameters satisfying Equations 24 
and 25, where 6 and Var(o) are estimated from 32 
experimentally observed failure stresses. 

5. S a f e t y  f a c t o r s  

In engineering designs "safety factors" are com- 

monly used. For brit t le materials the safety factor, 
s, is usually defined as 6/~, where 6 is the mean 
failure stress and o is the design stress at a given 
probabil i ty  of  failure, Pe. The safety factor for the 
Gumbel  distribution can be obtained from 
Equations 23 and 24 and for o u = 0 is given by 

S G = 

m - ?  

m + In [-- In(1 - - P 0 ]  
(3" = 0.5772). 

(27) 

For the Weibull distribution with cr u = 0 , i t  follows 

from Equations 20 and 21 that the safety factor is 

PO + 1/m) 
Sw = [ _ l n ( l _ p f ) ] u  m ( 2 8 )  

Table I shows the safety factors for the two distri- 
butions for a range of  values o f m  andPe.  For very 

low values of  Pf, Equation 27 predicts negative 
values for s~ ,  which are unacceptable. The dis- 

TAB LE I Safety factors for Gumbel distribution and for 
Weibull distribution in brackets. Negative values are 
denoted by - 

m Pf 

1/102 1/104 1/106 

6 3.87 - - 
(2.00) (4.31) (9.28) 

10 1.75 11.93 - 
(1.51) (2.39) (3.79) 

12 1.54 4.09 - 
(1.41) (2.06) (3.03) 

14 1.43 2.80 72.76 
(1.34) (1.86) (2.58) 
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crepancy between the values of  s G and s w is greater 
for the lower values of  both m and P~. This is also 
clear from Fig. 2. 

6. Discussion 
Experimental studies are not yet sufficiently 
advanced to determine the crack size distribution 
in a wide range of  brittle materials. It is likely that 
different materials or the same material prepared 
in different ways could have widely differing crack 
size distributions. For example they need not 
decay like c - "  for large c, a shape used in [1] that 
justified the use of  Weibull analysis. The work 
carried out in this paper examines a range of  flaw 
size distributions and the results support the use of  
Weibull analysis for all the flaw size distributions 
considered. Therefore it is possible to conclude 
that the distribution of  failure stress is insensitive 
to the flaw size distribution, a result which simpli- 
fies the analysis of  the strengths of  brittle materials. 

However certain reservations must be noted. 
When the flaw size distribution H(c)~  1- -ke  -n 
as in Case a, n can be related to the Weibull modu- 
lus by m = 2n. Therefore m is a material param- 
eter determined by the flaw size distribution. In 
the case o f  other distributions this is not so and 
comparing Equation 23 with cr u = 0, the Gumbel 
approximation to the Weibull distribution, and 
Equation 9 identifies m = bN/a N. So for Case b, 
the Lognormal distribution, m ~ 4Xl/~(in N)  1/2 
and depends on both the number of  cracks, N, in 
the material and a parameter, X, of  the flaw size 
distribution. In Case c, m ~ 21nN and in Case d, 

m ~ 41n N, so when the flaw size distribution is 
Exponential, Gamma or Normal, the WeibuU 
modulus is related to In N only. Since N is pro- 
portional to the volume, m is related to the vol- 
ume. These results can be used to investigate the 
nature of  the flaw size distribution experimentally. 

It is important to note that the ratio of  mean 
strengths of  two sets of  specimens of  the same 
material with different volumes, given by Equations 
7, 11, 15 and 19, is dependent on the type of  flaw 
size distribution. Also the derivation of safety 
factors based on the Gumbel distribution leads 
to difficulties as the probability density is non- 
zero the range -- ~ < a < ~ .  This means that the 
Gumbel distribution should only be used for cr > 0 
and should be used with care near o = 0, where 
the approximation is poor. For the Gumbel distri- 
bution shown in Fig. 2, which was fitted to 32 
observed failure stresses, P~ = 1.4 x 10 -7 when 
a = 0. This indicates that in practice the Gumbel 
distribution should be used with caution for 
Pf < 10 -6. 
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